
Increasing Compression Performance of
Block Based File Systems

Ferenc Havasi

havasi@inf.u-szeged.hu

Szeged, 2004.

1



Motivation

• Small electronics devices are more and more popular: mobile

phones, digital cameras, mp3 players, USB drives and PDAs

• These devices uses mostly flash memory as storage device

• Flash memory is costly (→ improve compression)

2



About Flash Memory

• Low power, high density, non-volatile storage. Two kinds: NOR

and NAND

• Reading: (almost) the same as reading RAM

• Writing: clearing bits (1 → 0)

• Bits can be reseted (0 → 1) only in erase blocks of tipically

128KB

• Limited lifetime - typ. 100,000 erase cycles

3



Storing Information on Flash

• Emulate standard block device and use an ordinary files system

(FAT, EXT2, NTFS, ...) - dangerous

• Use file system designed specially for flash: YAFFS, JFFS,

JFFS2 (log-structured file systems)

4



What does ”log-structured” mean?

Writes 100 bytes of
’A’ into the file (ino 20)

from offset 0

inode: 20
offset: 0
len: 100
version: 0
data: AAAA...

...

Writes 80 bytes of

from offset 100
’B’ into the file (ino 20)

inode: 20

len: 80
offset: 100

data: BBB...
version: 1

5



JFFS2

• Journaling Flash File System, version 2

• Splits the information (files) into typ. 4KB blocks

• Compression support - compresses blocks individually

• It uses ZLIB compression library

6



JFFS2 - usage method

flashing...mkfs.jffs2 File System
Image

Files
DEVICE

with

FLASH

7



Our improvements

• Replace ZLIB with a compression framwork (compressors are

plugins)

• Three compression mode support: none, size, priority

(determines which compressor will be used when a block is

needed to compress)

• Adopt and insert some free compressors (LZO, LZARI)

• Model file support

• Develop a new model-based compressor for ARM code

compression (ARMLIB)

8



Model file

• Non-model-based compressors compress the block individually

• Model-based ones have the possibility to collect some information

before the compression of the blocks. This information is

available during (de)compressing blocks

• Advantage: better compression ratio can be achieved

• Disadvantage: model(s) must be stored in RAM (but it is much

cheaper than flash)

9



Improved JFFS2 - usage method

flashing...

model generator

mkfs.jffs2

model

File System
Image

Files
DEVICE

with

FLASH

10



ARMLIB

• Designed to compress ARM binary code (32 bit instructions)

• All instruction is split into 8 parts - and reordered. All parts

(tokens) are 4 bits length.

31 24 23 16 15 8 7 0

8. 2. 1. 5. 6. 4. 3. 7.

CND INS PAR BAS DST OPH SEL OPL

• Tokens are coded by aritmetic coder.

• Model: binary decision tree

11



The model of ARMLIB

• Leaves are the probability distribution of the tokens - used by

the arithmetic coder

• Attributes are the tokens of the previous two instruction, plus

one which identifies which part of the instruction is under

(de)compressiong

• Decisions nodes: compares an attribute (predictor) with a

constant

• The tree is built by an ID3 like algorithm (greedy, entropy based)

• Pruned by a cost based algorithm, where the cost are the sum of

the tree storage-size plus the estimated encoded size

12



Decision tree of ARMLIB

true false

true false

last two ARM
i2
i1

instructions

s token/instruction pointer (0−7)

...

i2[1]==9s == 2

...2 2 4 9 7

i1[3]==3

probalility distribution

Binary Decision Tree17 Attributes (predictors)

13



Results

Compression mode Image Size Boot time

no compression 25 145 144 28 sec

ZLIB (original JFFS2) 13 758 396 24 sec

priority (read speed) 14 998 068 22 sec

size 11 153 120 117 sec

size without ARMLIB 13 695 912 34 sec

Familiar Linux 7.2 GPE2 on IPAQ 3970

14



Open Sourcing

• Discussed on the mailing list of JFFS2/MTD

• Write access to its CVS

• Already committed: compression framework, LZO, LZARI and

other small improvements

• Sooner or later it will be taken over into the Linux kernel

• In progress: model file support, ARMLIB

• http://www.inf.u-szeged.hu/jffs2/

15



Future

• Finish committing all features into CVS

• Optimize ARMLIB

• Develop new compressors (text/XML, ...)

• Other JFFS2 improvements (mount time, ...)

16


